Pioneering for You

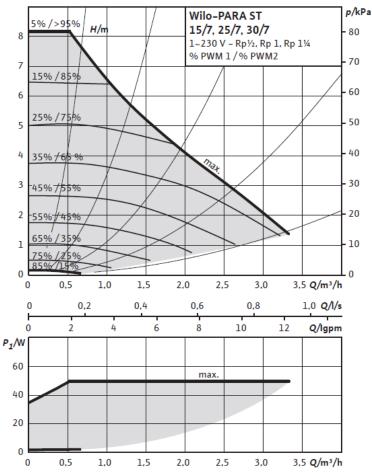
HVAC OEM Competence Centre

Para ST ** 7/iPWM

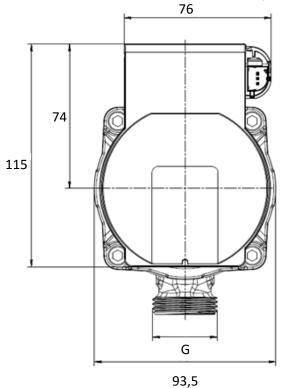
Datasheet

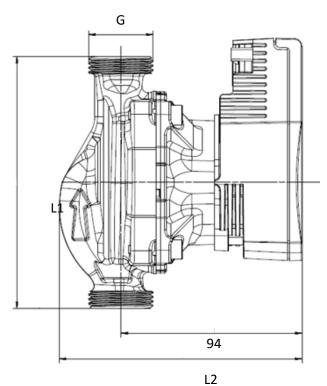
Para ST ** 7/iPWM

Field of application



Solar thermal


Para ST 15-130/7-50/ iPWM2-12 **WILO** High Efficiency pump for heating application ST Inline cast iron pump housing dedicated for solar thermal application Threaded connection DN 15 (25,30: also available 15 130 Pump housing length 130 (180: also available) 7.7 = delivery head in [m] at Q = 0 m³/h7 50 Max power consumption **iPWM** The pump is controlled by an external signal PWM2, i=feedback signal 12 Control box orientation 12 o'clock (3, 6, 9 o'clock: also available)


Hydraulic operational area

Dimensions

Туре	G	L1	L2	Weight
	mm	mm	mm	kg
15-130	1"	130	125	1,5
25-130	1"1/2	130	127	1,7
25-180	1"1/2	180	127	1,8
30-180	2"	180	127	2

Approved fluids (other fluids on request)

Heating water (in accordance with VDI 2035)
Water-glycol mixtures (max. 1:1; above 20% admixture, the pumping data must be checked)

Power

Energy Efficiency Index (EEI)	≤ 0.20
Max. delivery head	7,7 m
Max. volume flow	3,5 m ³ /h

Permitted field of application

Maximum static pressure PN 10

Electrical connection

Mains connection $1\sim230 \text{ V} +10\%/-15\%$, 50/60 Hz (IEC 60038 standard voltage)

Motor/electronics

Low voltage directive	20014/95/EC Conform
Electromagnetic compatibility	EN 61800-3
Emitted interference	EN 61000-6-3 EN 61000-6-4
Interference resistance	EN 61000-6-2 EN 61000-6-1
Protection class	IPx4D
Insulation class	F
RoHS / REACH	Compliant but not submitted

Minimum suction head at suction port to avoid cavitation at water pumping temperature

Willing a Chori nead at 30/33 C	Minimum suction head at 50/95°C	0.5/4.5 m
---------------------------------	---------------------------------	-----------

Motor data

Para	Speed	Power consumption 1-230 V	Current at 1-230 V	Motor protection
	n	P1	I	-
	rpm	W	А	-
ST ** 7/iPWM	700 – 4700	1.8-50	0.02-0.43	Integrated

Materials

Para	Pump housing	Impeller	Pump shaft	Bearing
ST ** 7/iPWM	Cast iron with cataphoresis treatment	PP composite with GF 40%	Stainless steel	Carbon, metal impregnated

Electrical Power connections

wilo

Integrated Molex 3-way connector

Available mains cables

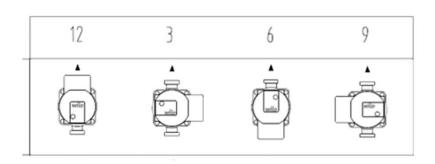
Overmoulded power connector with brass end splices and type Facon PR260 on terminal box side (deconnection possible)

	4530966	cable length 500mm
Not	4524578	cable length 1000mm
assembled	4530763	cable length 1500mm

4527857

Molex 3 ways

cable length 2000mm



WS8

Electrical Box orientation

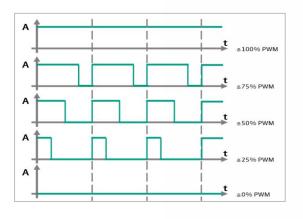
Flow direction

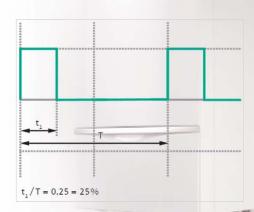
Electrical Signal connections

wilo

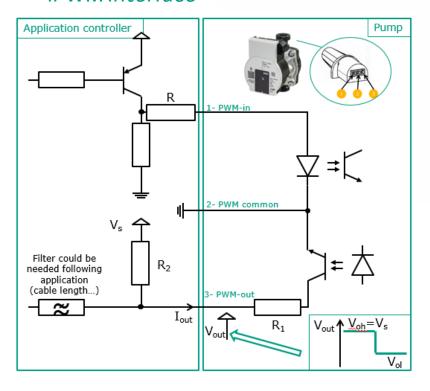
Front signal connection

Accessories signal cable


Available mains cables


	cable length 500mm	4530965	
Overmoulded signal connector with brass end splices and	cable length 1000mm	4530663	Not
type Facon PR72 (3 wires) on terminal box side (deconnection possible)	cable length 1500mm	4530764	assembled
	cable length 2000mm	4530664	

wilo

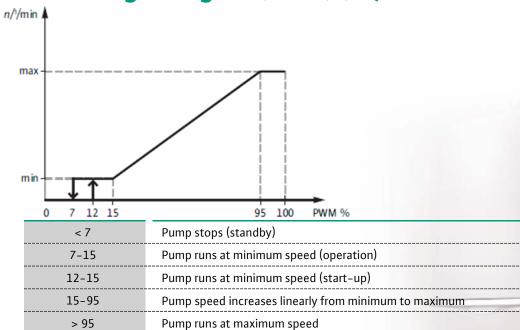

External control via a iPWM system

The actual / setpoint level assessment required for control is referred to a remote controller. The remote controller sends a PWM signal as an actuating variable to the Wilo-Para. The PWM signal generator gives a periodic pulse order to the pump (the duty cycle) according to DIN IEC 60469-1. The actuating variable is determined by the ratio between pulse duration and pulse period. The duty cycle is defined as a ratio without dimension, with a value of 0 ... 1 or 0 ... 100 %. This is explained in the following with ideal pulses which form a rectangular wave.

iPWM interface

PWM-in

Signal frequency	100Hz-5000Hz (1000Hz nominal)
Signal amplitude:	$\begin{array}{l} U_{\mathrm{IH}} = 4 - 24 V \\ U_{\mathrm{IL}} \leq 1 V \\ I_{\mathrm{IH}} = 3.5 - 10 mA \\ (depending \ on \ U_{\mathrm{IH}}) \end{array}$
Output resistance [R]:	>50 Ω *

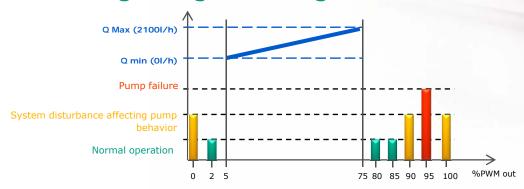

PWM-out

V _s	3V≤V _s ≤24V
R ₂	typical 4,7kΩ for V _s =5V *
Signal frequency:	75Hz +/- 2Hz
R ₁	470Ω +/-5%
$V_{ol} = V_{out low}$	<1V for I _{out} <1mA

^{*} depending on customer application

iPWM-in signal logic 2 (Solar) (%)

100 Hz-5000 Hz (1000 Hz nominal)


iPWM-out signal logic (heating) (%)

yes

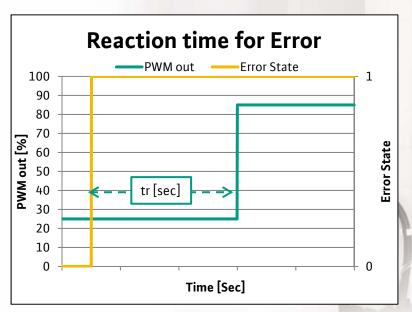
Signal frequency:

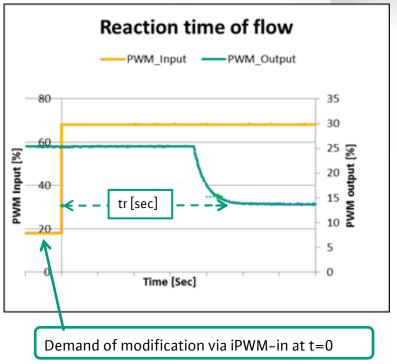
Signal amplitude:

Signal polarity:

% PWM-out	Status	Potential causes
0	Pump output iPWM interface damaged	iPWM interface in short circuit
2	Stand-by, pump is ready to run	/
5-75	Pump is running normally, flow information is supplied	/
80	Abnormal running mode Pump is running but not at optimal performance	- Undervoltage 160/170-194V - Self thermal protecting mode
85	Abnormal function mode Pump has stopped but is still functional	Undervoltage <160/170VOvervoltageUnexpected external flow
90	Abnormal function mode Pump has stopped but is still functional Check the installation setup and medium	Failure on another component than pumpDebris in the installationBad temperature setup
95	The pump has stopped due to permanent failure	- Pump blocked - Electronic module out of order
100	Problem of iPWM connection	iPWM interface in open circuit

Minimum 3.6V at 3 mA Up to 24V for 7.5 mA absorbed by the pump interface


iPWM-out accuracy


Heating circuit (water)	Accuracy on measurement (valid for rotation speed > 2000 RPM)	Resolution on iPWM output (additional to accuracy)
for Q ≤ 1400L/h	+/- 200 L/h*	10 L/h
for Q > 1400L/h	+/- 20%*	10 L/h

^{*}temperature correction factor available on demand for refining

iPWM-out reaction time

% PWM-out	Reaction time	
0		
2	5 sec	
5-75	5 sec	
80	60 sec	
85	2 sec	
90	2 sec	
95	5 sec	
100		

If the controller adjusts iPWM-in with a higher frequency than the "reaction time", the flow data sent by iPWM-out may not be updated. However the rotation speed will change according to the demand.

WILO Group – HVAC OEM Competence Centre

WILO Intec
50 av. Casella
18700 - Aubigny sur Nère
France
T +33 2 48 81 62 62
information@wilointec.com
www.wilo-oem.com

